Exponents and logarithms

Contents

Properties

Each row shows the same property in exponential and logarithmic forms.

Let X=bxX = b^x, Y=byY = b^y. For b>0b > 0:

exponents logarithms
bx=Xb^x = X x=logbXx = \log_bX
b0=1b^0 = 1 logb(1)=0\log_b(1) = 0
blogbx=x\displaystyle b^{\log_bx} = x logb(bx)=x\log_b(b^x) = x
bxby=bx+yb^x b^y=b^{x+y} logbX+logbY=logb(XY)\displaystyle \log_b{X} + \log_bY=\log_b(XY)
b1n=bn\displaystyle b^{\frac1n} = \sqrt[n]{b}
bx=1bx\displaystyle b^{-x} = \frac{1}{b^x} logb(1X)=logb(X)\displaystyle \log_b\left(\frac{1}X\right) = -\log_b(X)
(bx)y=bxy=Z(b^x)^y = b^{xy} = Z logbXy=ylogbXlogXZ=logbZlogbXlogbxZ=1xlogbZ\displaystyle \log_b{X^y} = y\log_bX \\ \log_X Z = \frac{\log_bZ}{\log_bX} \\ \log_{b^x}Z =\frac1{x}\log_b{Z}

These properties does not assume any relationships between the variables, rather they are used this way to help highlight the connections between the exponential and the equivalent logarithmic forms.

Strategies

  1. Take natural log (ln\ln) of both sides.
  2. Convert to the same base.
  3. Let y=logxy = \log x.

Example: Solve log4(x2)+4=2(log4x)2\log_4(x^2) + 4 = 2\left(\log_4 x\right)^2


log4(x2)+4=2(log4x)22log4x+4=2(log4x)20=2(log4x)22log4x40=(log4x)2log4x20=(log4x2)(log4x+1)log4x=2,1x=42,41x=16,14\begin{align*} \log_4(x^2) + 4 &= 2\left(\log_4 x\right)^2\\ 2\log_4 x + 4 &= 2\left(\log_4 x\right)^2 \\ 0 &= 2\left(\log_4 x\right)^2 - 2\log_4 x - 4 \\ 0 &= \left(\log_4 x\right)^2 - \log_4 x - 2 \\ 0 &= \left(\log_4 x - 2\right)\left(\log_4 x + 1\right) \\ \log_4 x &= 2, -1 \\ x &= 4^2, 4^{-1} \\ x &= 16, \frac{1}{4} \qed \end{align*}

Order of operations

abc=a(bc)(ab)ca^{b^c} = a^{\left(b^c\right)} \neq \left(a^b\right)^c

Exponents are evaluated top to bottom.

Notes

The nnth roots of a number are not unique. While both 33 and 3-3 are both square roots of 99, 9=3\sqrt{9} = 3 but 93\sqrt{9} \neq -3. xn\sqrt[n]{x} typically refer to what’s known as the “principal root”, though in some cases it could refer to the negative real root, if there is no positive real root. For more information see fractional exponents of complex numbers (HL) and fundamendal theorem of algebra (HL).