Midpoint, volume, surface area

Contents

Midpoint

The midpoint of two points (x1,y1,z1)\left(x_1, y_1, z_1\right) and (x2,y2,z2)\left(x_2, y_2, z_2\right) in 3-D space is

midpoint=(x1+x22,y1+y22,z1+z22)\text{midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)

HL students should recognize this as the mean of two position vectors.

2D shapes area and perimeter

shapeareanotes
circleπr2\pi r^2
triangle12bh\displaystyle \frac 12 bhHeight (altitude) may be outside the base, for an obtuse triangle
parallelogrambhbh
rectanglelwlw
trapezoid (trapezium)12(a+b)h\displaystyle {\frac 12(a+b)h}aa and bb are the two parallel bases

Circumference of a circle: 2πr2\pi r

Perimeter of a square: 4l4l

Perimeter of a rectangle: 2(l+w)=2l+2w2(l+w) = 2l + 2w

Volume and surface area of 3D shapes

3D shapevolumesurface areanotes
sphere43πr3\displaystyle \frac 43\pi r^34πr24\pi r^2
semisphere23πr3\displaystyle \frac 23\pi r^33πr23\pi r^2including base
prismAhAhAA: base area
pyramid13Ah\displaystyle \frac 13 AhAA: base area
cylinderπr2h\pi r^2h2πr(r+h)2\pi r(r + h)2πrh2\pi rh is for the curved surface
cone13πr2h\displaystyle \frac 13 \pi r^2hπr(r+l)\pi r (r + l)πrl\pi r l is the curved surface where ll is the slant length
rectangular prism (cuboid)lwhlwh2(lw+wh+lh)2(lw + wh + lh)beware of open-top boxes