More derivatives (HL)

Here are some more derivatives for HL candidates.

functionderivative function
tanx\tan xsec2x=1cos2x\displaystyle \sec^2 x = \frac{1}{\cos^2x}
cosecx\cosec xcosecxcotx=cosxsin2x\displaystyle -\cosec x\cot x = -\frac{\cos x}{\sin^2x}
secx\sec xsecxtanx=sinxcos2x\displaystyle \sec x\tan x = \frac{\sin x}{\cos^2x}
cotx\cot xcosec2x=1sin2x\displaystyle -\cosec^2 x = -\frac{1}{\sin^2x}
ax=exlnaa^x = \e^{x\ln a}axlnaa^x\ln a
logax=lnxlna\displaystyle\log_ax = \frac{\ln x}{\ln a} \quad1xlna\displaystyle\frac {1}{x\ln a}
arcsinx\arcsin x11x2\displaystyle \frac{1}{\sqrt{1-x^2}}
arccosx\arccos x11x2\displaystyle -\frac{1}{\sqrt{1-x^2}}
arctanx\arctan x11+x2\displaystyle \frac{1}{1+x^2}

The derivatives of reciprocal trig functions automatically get an - from from the 1-1 in f(x)1f(x)^{-1}, but for secx=1cosx\sec x = \frac{1}{\cos x} the negative cancel with ddxcosx=sinx\frac{\d }{\d x}\cos x = -\sin x.

The derivatives of exponential and logarithmic functions applies chain rule to the function expressed in base ee.

The sign difference between derivatives of arcsinx\arcsin x and arccosy\arccos y speaks to the fact that the two inverse trig functions are mirror images of each other across horizontal line y=π4y = \frac{\pi}{4}. The inverse trig derivatives can be found using implicit differentiation and converting trig functions with unknown angle (SL).