More trig identities (HL)
That word from English A strikes back where it hurts.
Contents
Double angle identity for tan
tan2θ=1−tan2θ2tanθ Compound angle identities
Note, ± and ∓ in one equation means all use top or all use bottom
sin(α±β)=sinαcosβ±cosαsinβ cos(α±β)=cosαcosβ∓sinαsinβ tan(α±β)=1∓tanαtanβtanα±tanβ Note: α=β simplifies to the double angle identities for +, and the values for sin0,cos0,tan0 for −.
Supplementary angle identities
This relates to odd/even symmetry across 2π rad
sin(π−θ)=sin(θ) cos(π−θ)=−cos(θ) tan(π−θ)=−tan(θ) Reciprocal trig functions
See also properties of reciprocal functions
Not to be confused with inverse trig functions
cscθ=cosecθ=sinθ1 secθ=cosθ1 cotθ=tanθ1 Pythagorean identities II
OG:
sin2θ+cos2θ=1 Dividing all terms by sin2θ, or by cos2θ, result in
1+cot2θ=cosec2θ tan2θ+1=sec2θ