More trig identities (HL)

That word from English A strikes back where it hurts.

Contents

Double angle identity for tan\bm\tan

tan2θ=2tanθ1tan2θ\tan2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}

Compound angle identities

Note, ±\pm and \mp in one equation means all use top or all use bottom

sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta
cos(α±β)=cosαcosβsinαsinβ\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta
tan(α±β)=tanα±tanβ1tanαtanβ\tan(\alpha \pm \beta) = \frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}

Note: α=β\alpha = \beta simplifies to the double angle identities for ++, and the values for sin0,cos0,tan0\sin0, \cos0,\tan0 for -.

Supplementary angle identities

This relates to odd/even symmetry across π2 rad\frac{\pi}{2} \text{ rad}

sin(πθ)=sin(θ)\sin(\pi - \theta) = \sin(\theta)
cos(πθ)=cos(θ)\cos(\pi - \theta) = -\cos(\theta)
tan(πθ)=tan(θ)\tan(\pi - \theta) = -\tan(\theta)

Reciprocal trig functions

See also properties of reciprocal functions

Not to be confused with inverse trig functions

cscθ=cosecθ=1sinθ\csc\theta = \cosec\theta = \frac{1}{\sin\theta}
secθ=1cosθ\sec\theta = \frac{1}{\cos\theta}
cotθ=1tanθ\cot\theta = \frac{1}{\tan\theta}

Pythagorean identities II

OG:

sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1

Dividing all terms by sin2θ\sin^2\theta, or by cos2θ\cos^2\theta, result in

1+cot2θ=cosec2θ1 + \cot^2\theta = \cosec^2\theta
tan2θ+1=sec2θ\tan^2\theta + 1 = \sec^2\theta